Ali Test

No.1

A

本题有两种优惠券活动,分别为每满60-5,满299-60.

  • 对250元的耳机而言,如果不凑单,则优惠4×5=20元,实际花费230元

  • 对600元的音箱而言,如果不凑单,则优惠10×5+60=110元,实际花费490元

  • 对于一起购买音箱+耳机,如果不凑单,则优惠14×5+60=130元,实际花费720元

首先,一起分开购买比一起购买划算,因为对于优惠力度更大的299-60,单独购买可能可以使用2次,一起购买只能使用一次。

$\alpha$ 对于,耳机而言,有:

\begin{equation} \begin{aligned} &\min S_e \\ & \begin{array}{r@{\quad}l@{}l@{\quad}l} s.t.& S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-30×sign(S_{eo}-299)-30\\ &S_{eo}\ge250 \end{array} \end{aligned} \end{equation}

  • when $S_{eo}\in[240,299)$,$S_e=S_{eo}-20$,故在$S_{eo}=250$时取到最小值$S_e=230$
  • when $S_{eo}\in[299,299]$,$S_e=S_{eo}-80$,故在$S_{eo}=299$时取到最小值$S_e=219$
  • when $S_{eo}\in[300,+\infty]$,$S_e=S_{eo}-\dfrac{S_{eo}}{60}×5-60=\dfrac{11S_{eo}}{12}-60$故在$S_{eo}=300$时取到最小值$S_e=215$

且当故在$S_{eo}=300$时取到最小值$S_e=215$

$\beta$ 同理,对音箱而言,有:

\begin{equation} \begin{aligned} &\min S_v \\ & \begin{array}{r@{\quad}l@{}l@{\quad}l} s.t.& S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60\\ &S_{vo}\ge600 \end{array} \end{aligned} \end{equation}

when $S_{vo}\in[600,+\infty]$,$S_v=S_{vo}-\dfrac{S_{vo}}{60}×5-60=\dfrac{11S_{vo}}{12}-60$故在$S_{vo}=600$时取到最小值$S_v=490$

综上所述,总花费=215+490=705元

B

B.1

当至少一项比A店优惠

  • 若耳机更优惠,则需要$S_{be}\le214$
    • $S_{be}=S_{beo}-x-30×sign(S_{eo}-299)-30$
      • when $S_{beo}\in[250,299]$,$S_{be}=S_{beo}-x$,故在$S_{beo}=250$时取到最小值$S_{be}=250-x$
      • when $S_{beo}\in[299,+\infty]$,$S_{be}=S_{beo}-x-60$,故在$S_{beo}=299$时取到最小值$S_{be}=239-x$
    • $min(S_{be})=239-x$, so, $x\ge25$
  • 若音箱更优惠,则需要$S_{bv} \le 489$
    • $S_{bv}=S_{bvo}-x-60$
      • when $S_{bvo}\in[600,+\infty]$,$S_{bv}=S_{bvo}-x-60$,故在$S_{bvo}=600$时取到最小值$S_{be}540-x$
    • $min(S_{bv})=540-x$, so, $x\ge51$

故,综上所述当 $x\ge25$时,B店至少有一样产品会比A店便宜

B.2

两项合买的总金额比A店便宜

在当前问题中,仍然是分开购买比一起购买优惠

故,根据B.1中分析所得,$min(S_{be})=239-x$,$min(S_{bv})=540-x$

得到$min(S_{b})=779-2x$, so $x\ge37.5$

C

C.1

因为计算盈利率,假设$p_1\ge c_1$,$p_2\ge c_2$

在分析中假定售价$p_1$为定值,则

$r_1=P(p_1\le S_1)×(p_1-c_1)=\dfrac{u_1-p_1}{u_1}×(p_1-c_1)$

所以当$p_1^*=\dfrac{u_1+c_1}{2}$时利润$r_1$最大为$r_1^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1}$

同理当$p_2^*=\dfrac{u_2+c_2}{2}$时利润$r_2$最大为$r_2^*=\dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2}$

C.2

因为$S_1,S_2$为独立同分布,则$S=S_1+S_2$

故求得$S$的概率密度,从而求得$r_{12}$

$r_{12}=\begin{equation} \left\{ ​ \begin{array}{} ​ \dfrac{1}{2u_1u_2}(u_1+u_2-p_{12})^2(p_{12}-c_{12}), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ ​ \dfrac{2u_1u_2-p_{12}^2+(p_{12}-min(u_1, u_2))^2}{2u_1u_2}(p_{12}-c_{12}), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ ​ \dfrac{2u_1u_2-p_{12}^2}{2u_1u_2}(p_{12}-c_{12}), & c_{12}\le p_{12}\le min(u_1, u_2)\\ ​ \end{array} \right. \end{equation}$

$r_{12}’=\begin{equation} \left\{ ​ \begin{array}{} ​ k_1(p_{12}-(u_1+u_2))(3p_{12}-(2c_{12}+u_1+u_2)), & max(u_1, u_2)\le p_{12} \le u_1+u_2 \\ ​ k_2(-4p_{12}+2c_{12}+2max(u_1, u_2)+min(u_1,u_2)), & min(u_1, u_2) \le p_{12}\le max(u_1, u_2)\\ ​ k_3(-3p_{12}^2+2p_{12}c_{12}+2u_1u_2), & c_{12} \le p_{12}\le min(u_1, u_2)\\ ​ \end{array} \right. \end{equation}$

可以看出函数$r_{12}$呈现w形趋势,故在$\dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4},\dfrac{2c_{12}+u_1+u_2}{3}$两处可能取到最大值

因为$u_1, u_2$地位相同,不妨设$u_1<u_2$

  • when $p_{12} = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}$, $r_{12} = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}$
  • when $p_{12} = \dfrac{2c_{12}+u_1+u_2}{3}$, $r_{12} = \dfrac{2(u_1+u_2-c_{12})^3}{27u_1u_2}$

得到$p_{12}^* = \dfrac{2c_{12}+2max(u_1,u_2)+min(u_1,u_2)}{4}$, $r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2}$

C.3

\begin{equation} r_{total}= r_1^*+r_2^*=\dfrac{c_1^2+u_1^2-2c_1u_1}{4u_1} + \dfrac{c_2^2+u_2^2-2c_2u_2}{4u_2} \end{equation}

\begin{equation} r_{12}^* = 1+\dfrac{(u_1-2c_{12})^2-4u_2^2}{16u_2} \end{equation}

单卖和捆绑销售 利润随着$u_1,u_2,c_{12}$等发生改变

NO.2

A

You can use this BibTex to reference this blog if you find it useful and want to quote it.